Frontal Top-Down Signals Increase Coupling of Auditory Low-Frequency Oscillations to Continuous Speech in Human Listeners
نویسندگان
چکیده
Humans show a remarkable ability to understand continuous speech even under adverse listening conditions. This ability critically relies on dynamically updated predictions of incoming sensory information, but exactly how top-down predictions improve speech processing is still unclear. Brain oscillations are a likely mechanism for these top-down predictions [1, 2]. Quasi-rhythmic components in speech are known to entrain low-frequency oscillations in auditory areas [3, 4], and this entrainment increases with intelligibility [5]. We hypothesize that top-down signals from frontal brain areas causally modulate the phase of brain oscillations in auditory cortex. We use magnetoencephalography (MEG) to monitor brain oscillations in 22 participants during continuous speech perception. We characterize prominent spectral components of speech-brain coupling in auditory cortex and use causal connectivity analysis (transfer entropy) to identify the top-down signals driving this coupling more strongly during intelligible speech than during unintelligible speech. We report three main findings. First, frontal and motor cortices significantly modulate the phase of speech-coupled low-frequency oscillations in auditory cortex, and this effect depends on intelligibility of speech. Second, top-down signals are significantly stronger for left auditory cortex than for right auditory cortex. Third, speech-auditory cortex coupling is enhanced as a function of stronger top-down signals. Together, our results suggest that low-frequency brain oscillations play a role in implementing predictive top-down control during continuous speech perception and that top-down control is largely directed at left auditory cortex. This suggests a close relationship between (left-lateralized) speech production areas and the implementation of top-down control in continuous speech perception.
منابع مشابه
Speech Rhythms and Multiplexed Oscillatory Sensory Coding in the Human Brain
Cortical oscillations are likely candidates for segmentation and coding of continuous speech. Here, we monitored continuous speech processing with magnetoencephalography (MEG) to unravel the principles of speech segmentation and coding. We demonstrate that speech entrains the phase of low-frequency (delta, theta) and the amplitude of high-frequency (gamma) oscillations in the auditory cortex. P...
متن کاملHigh-frequency neural activity predicts word parsing in ambiguous speech streams.
During speech listening, the brain parses a continuous acoustic stream of information into computational units (e.g., syllables or words) necessary for speech comprehension. Recent neuroscientific hypotheses have proposed that neural oscillations contribute to speech parsing, but whether they do so on the basis of acoustic cues (bottom-up acoustic parsing) or as a function of available linguist...
متن کاملProcessing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model
The rostral brainstem receives both "bottom-up" input from the ascending auditory system and "top-down" descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequen...
متن کاملWord segmentation in Persian continuous speech using F0 contour
Word segmentation in continuous speech is a complex cognitive process. Previous research on spoken word segmentation has revealed that in fixed-stress languages, listeners use acoustic cues to stress to de-segment speech into words. It has been further assumed that stress in non-final or non-initial position hinders the demarcative function of this prosodic factor. In Persian, stress is retract...
متن کاملNeural Oscillations Carry Speech Rhythm through to Comprehension
A key feature of speech is the quasi-regular rhythmic information contained in its slow amplitude modulations. In this article we review the information conveyed by speech rhythm, and the role of ongoing brain oscillations in listeners' processing of this content. Our starting point is the fact that speech is inherently temporal, and that rhythmic information conveyed by the amplitude envelope ...
متن کامل